SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2006; 00:1-7 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

MetaSockets: Design and P
Operation of Run-time &
Reconfigurable

Communication Services?

S. M. Sadjadi'*, P. K. McKinley?, E. P. Kasten?, and Z. Zhou?

b Autonomic Computing Research Laboratory, School of Computing and Information Sciences,
Florida International University, Miami, Florida 33199.
E-mail: sadjadi@cis.fiu.edu

2 Software Engineering and Network Systems Laboratory, Department of Computer Science
and Engineering, Michigan State University, East Lansing, Michigan 48824.
E-mails: {mckinley,kasten,zhouzhin}@cse.msu.edu

SUMMARY

This paper describes the internal architecture and operation of an adaptable
communication component called the MetaSocket. MetaSockets are created using
Adaptive Java, a reflective extension to Java that enables a component’s internal
architecture and behavior to be adapted at run time in response to external stimuli.
This paper describes how adaptive behavior is implemented in MetaSockets, as well as
how MetaSockets interact with other adaptive components, such as decision makers and
event mediators. Results of experiments on a mobile computing testbed demonstrate
how MetaSockets respond to dynamic wireless channel conditions in order to improve
the quality of interactive audio streams delivered to iPAQ handheld computers.

KEY WORDS: Mobile computing, quality-of-service, computational reflection, adaptive middleware,
real-time audio-streaming, event-based systems.

1. Introduction

The large-scale deployment of wireless communication services and advances in handheld
computing devices enable users to interact with one another from virtually any location.

*This work was done while this author was with Michigan State University.

Contract/grant sponsor: This work was supported in part by the U.S. Department of the Navy and Office
of Naval Research (ONR) and in part by National Science Foundation (NSF); contract/grant number: ONR:
N00014-01-1-0744, and NSF: CCR-9912407, EIA-0000433, EIA-0130724, and ITR-0313142.

Received 4/1/200
Copyright © 2006 John Wiley & Sons, Ltd. Revised 3/16/2006

2 S. M. SADJADI, P. K. MCKINLEY, E. P. KASTEN, Z. ZHOU
&

Example applications include computer-supported cooperative work, management of large
industrial sites, and military command and control environments. Such interactive distributed
applications are particularly sensitive to the heterogeneity of the devices and networks used by
the participants. Specifically, an application must accommodate devices, from workstations to
PDAs, with widely varying display characteristics and system resource constraints. Moreover,
the application must tolerate the highly dynamic channel conditions that arise as the user
moves about the environment. One of the key challenges in designing future interactive
systems is how to enable them to adapt the communication services to address changing
conditions at run time. Developing and maintaining such software is a nontrivial task. In this
paper, we demonstrate the effectiveness of programming language support for the development
and maintenance of an underlying communication infrastructure that must adapt to its
environment.

Adaptability can be implemented in different parts of the system [1]. One approach is
to introduce a layer of adaptive middleware between applications and underlying transport
services [2-7]. We are currently conducting an ONR-sponsored project called RA PIDware that
addresses the design of adaptive middleware for dynamic, heterogeneous environments. Such
systems require run-time adaptation, including the ability to modify and replace components,
in order to survive hardware component failures, network outages, and security attacks.

A major focus of our study is on programming language support for adaptability.
We previously developed Adaptive Java [8], an extension to Java that supports dynamic
reconfiguration of software components. This paper concerns an Adaptive Java component
called the MetaSocket (for “metamorphic” socket). Although the socket abstraction is relatively
low-level compared by many current distributed computing platforms (e.g., CORBA, Java
RMI, DCOM, and .NET Remoting), its ubiquity in distributed applications, as well as in
middleware platforms, makes it a natural place to introduce adaptive behavior. MetaSockets
are created from existing Java socket classes, but their structure and behavior can be adapted at
run time in response to external stimuli. For example, MetaSockets can dynamically enhance
error control when the channel quality is poor and can use stronger encryption in hostile
environments.

A key concept in the MetaSocket model is that adaptive functionality related to
communication streams, possibly tangled throughout application code, is extracted and placed
in the MetaSocket layer. Application modules and higher-level middleware layers can invoke
traditional socket operations using MetaSockets, while the MetaSockets themselves can adapt
(or be adapted) to changes in the environment. This separation of concerns [9] depicted in
Figure 1, leads to code that is easier to maintain and evolve to incorporate new adaptive
functionality.

In this paper, we focus on the internal architecture and the operation of MetaSockets
and present a case study in the use of MetaSockets to support audio streaming over
wireless channels. The case study, in which iPAQ handheld computers are used as audio
“communicators,” illustrates how MetaSockets interact with other adaptive components,
such as decision makers and event mediators, to realize run-time adaptability in real-time
communication services. The main contribution of this work is to propose a language-based
approach to run-time adaptability and, through the case study, to reveal several subtle design
issues that need to be addressed in the development of such software.

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

SRE METASOCKETS: ARCHITECTURE AND OPERATION 3

Adaptive Communication Functionality

/

— e N
~ Application Code — Application Code

\ — <z \ <

e A s 9

. = / \Qigh-Leve] Middleware
= Middleware _ LN _
L -) |:> [E — MetaSockets = E:]
()
JVM JVM

() ()
Operating System Operating System

- J - J

Figure 1. Separation of concerns using MetaSockets.

The remainder of this paper is organized as follows. Section 2 provides background
information on the Adaptive Java programming language. In Section 3, we describe the design
and implementation of a MetaSocket variation that is based on the Java MulticastSocket class.
Section 4 discusses the case study in the the use of MetaSockets to support adaptive error
control on wireless audio channels. Section 5 presents results of experiments that demonstrate
the effectiveness of the proposed methods in adapting to dynamic changes in packet loss rate.
Section 6 discusses related work, and Section 7 presents our conclusions and discusses future
directions.

2. Adaptive Java Background

Adaptive Java [8] is an extension to Java that adds behavioral reflection to Java’s
structural reflection, by introducing new language constructs. These constructs are rooted
in computational reflection [10,11], which refers to the ability of a computational process to
reason about (and possibly alter) its own behavior. A key issue that arises in the application
of reflection to middleware platforms is the degree to which the system should be able to
change its own behavior. A completely open implementation implies that an application can
be recomposed entirely at run-time. In the extreme, all the default components of the system
can be destroyed and new ones instantiated, such that the goal of the base-level computation
is changed (A spreadsheet can be recomposed as a video player!). On the other hand, limiting
adaptability also limits the ability of the system to survive adverse situations.

We began our investigation of this problem by focusing on the reflective interfaces exhibited
by components. In object-oriented environments, the entities at a meta level are called meta-
objects, and the collection of interfaces provided by a set of meta-objects is called a meta-
object protocol, or MOP. Rather than considering MOPs as orthogonal portals into base-level
functionality, we consider a model in which MOPs are constructed from a set of primitive

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

4 S.M.SADJADI, P. K. MCKINLEY, E. P. KASTEN, Z. ZHOU
&

Meta Level MOPs

:

Base Level

Figure 2. MOPs implemented with primitive operations.

operations, or atoms, that provide access to component behavior. As shown in Figure 2, while
different MOPs are defined for different aspects of adaptive behavior (e.g., fault tolerance,
security, quality-of-service, power consumption), they likely will overlap in their use of these
atoms. This design appears to exhibit several desirable features. First, explicitly defining
intersections in MOP functionality may facilitate coordinated adaptation to events. Second,
additional MOPs can be constructed to address issues that did not arise in the original design.
Third, limiting interaction with the base level may improve the ability of the system to check,
at run-time, the consistency of modifications with the specified behavior of the component.

The basic building blocks used in an Adaptive Java program are components, which in
this context can be equated to adaptable classes. The key programming concept in Adaptive
Java is to provide three separate component interfaces: one for performing normal imperative
operations on the object (computation), one for observing internal behavior (introspection), and
one for changing internal behavior (intercession). Operations in the computation dimension
are referred to as invocations. Operations in the introspection dimension are called refractions;
they offer a partial view of internal structure and behavior, but are not allowed to change
the state or behavior of the component. Operations in the intercession dimension are called
transmutations; they are used to modify the computational behavior of the component.

An existing Java class can be converted into an adaptable component in two steps. In the
first step, a base-level Adaptive Java component is constructed from the Java class through
an operation called absorption, which uses the absorbs keyword. As part of the absorption
procedure, mutable methods called invocations are created on the base-level component to
expose the functionality of the absorbed class. Invocations are mutable in the sense that
they can be added to and removed from existing components at run time using meta-
level transmutations. In the second step, metafication enables the creation of refractions and
transmutations that operate on the base component. Meta components are defined using the
metafy keyword. The meta-level can also be given a meta-level (meta-meta-level), which can
be used to refract and transmute the meta-level. In theory, this reification of meta-levels for
other meta-levels could continue indefinitely [11]. Example code is provided in Section 3.2.

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

METASOCKETS: ARCHITECTURE AND OPERATION 5

Adaptive Java Version 1.0 [8] is implemented using CUP [12], a parser generator for Java.
CUP takes the grammar productions for the Adaptive Java extensions and generates an LALR
parser, called ajc, which performs a source-to-source conversion of Adaptive Java code into
Java code. Semantic routines were added to this parser such that the generated Java code
could then be compiled using a standard Java compiler.

3. MetaSocket Design and Implementation

In this section we describe the architecture and operation of MetaSockets. Our discussion
is limited to particular types of MetaSockets designed to enhance the quality of service for
multicast communication streams. However, the MetaSocket model is general: MetaSockets can
also be used for unicast communication and can be tailored to provide adaptive functionality
in other cross-cutting concerns, such as security, energy consumption, and fault tolerance.

Figure 3 shows the absorption of a Java MulticastSocket base-level class by a SendMSocket
base-level component, and the metafication of this component to a MetaSendMSocket meta-
level component. Figure 3(a) depicts a Java MulticastSocket class and a subset of its public
methods: receive(), send(), close(), joinGroup(), and leaveGroup(). Figure 3(b) shows a SendMSocket
component, which is designed to be used as a send-only multicast socket. The SendMSocket
component absorbs the Java MulticastSocket class and implements send() and close() invocations
that can be used by other components. Other methods of the base-level class are occluded. A
link between an invocation and a method indicates a dependency. For example, the send()
invocation depends on the send() method, because its implementation calls that method.
Figure 3(c) shows a MetaSendMSocket component, which metafies an instance of the SendMSocket
component and provides a refraction, getStatus(), and two transmutations, insertFilter() and
removeFilter(). The use and operation of these primitives will be explained shortly. Again, a
link between a refraction (or transmutation) and an invocation indicates a dependency.

In a similar manner, a receive-only MetaSocket can be created for use on the receiving
side of a communication channel. The RecvMSocket base-level component absorbs a Java
MulticastSocket class. In addition to the receive() and close() invocations, this component also
provides joinGroup() and leaveGroup() invocations, which are needed for joining and leaving an
IP multicast group. All these invocations depend on their respective counterparts in the Java
MulticastSocket class. The MetaRecvMSocket metafies an instance of RecvMSocket component and
provides the same refractions and transmutations as does the MetaSendMSocket component. The
code for MetaSendMSocket and MetaRecvMSocket can be loaded at run time, using the Java Class
class and Java reflection package. This dynamic loading of adaptive code enables Adaptive Java
applications to adapt to unanticipated changes at run time.

3.1. Internal Architecture and Operation

Figure 4 illustrates the internal architecture of both a MetaSendMSocket and a MetaRecvMSocket,
as configured in our study. In this metafication, packets are passed through a pipeline of Filter
components, each of which processes the packet. To keep the architecture simple, this pipeline
is the same for all packets. The pipeline has two modes of operation, namely, MultiThreaded

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

6 S. M. SADJADI, P. K. MCKINLEY, E. P. KASTEN, Z. ZHOU
&

@ base-class method . . A refraction
@ replaced invocation

@ base-level invocation O transmutation

0 insertFilter()

receive() send()
send()
close) ’ /\ getStatus()
joinGroup()
TeaveG close() g
eaveGroup() (O removeFilter()
(a) (b)

(©)

Figure 3. MetaSocket absorption and metafication: (a) Java MulticastSocket as the base-level class;
(b) SendMSocket as the base-level component; (c) MetaSendMSocket, a filter-oriented meta-level
component.

and SingleThreaded. In the former mode, each filter runs as a separate thread so that filters
can execute concurrently to process different packets; while in the latter mode, a single thread
executes all the filters and processes packets one-by-one through the pipeline.

Example filter services include: auditing traffic and usage patterns, transcoding data streams
into lower-bandwidth versions, scanning for viruses, and implementing forward error correction
(FEC) to make data streams more resilient to packet loss. In some cases, such as auditing,
a filter can act alone on either the sending or the receiving side of the channel. In other
cases, such as FEC, modification of the packet stream introduced by a filter on the sender
must be reversed by a peer filter on the receiver. In our implementation, when a packet is
processed by a filter at the sender side that needs a reverse operation at the receiver side, an
application-level header is prepended to the packet after it is processed. At the receiver side,
these headers identify the reverse processing order and as a result filters required to reverse
the transformations will be added to the pipeline. Each header contains enough information
to find and load the receiving filters using Component Loader and Trader components explained
later in Section 4.

Packet Buffers. The set of Filter components configured in a MetaSocket pipeline exchange
packets via a set of PacketBuffer components. Each filter uses a source and destination packet
buffer. Since a packet buffer may be used by multiple threads, its invocations, including get()
and put(), are defined as synchronized. Each filter in the filter pipeline retrieves a packet from
its source packet buffer, processes it, and places it into its destination packet buffer. The
destination packet buffer of a filter in the pipeline is either the source packet buffer of the next
filter or lastPacketBuffer.

Inserting and Removing Filters. The transmutations insertFilter() and removeFilter() are
used to change the filter configuration, and the getStatus() refraction is used to read the
current configuration. The insertFilter() transmutation consists of three operations. First, it
sets the source packet buffer of the next filter in the pipeline to the new filter’s destination

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

METASOCKETS: ARCHITECTURE AND OPERATION

7

2 E getStatus()

< PO
/
7/
/ :
jetoj-

AY

\

end()

insertFilter()
removeFilter()

aurpadig 1911

send()

\
close() lose()

(@)

@ —invocation FP: firstPacketBuffer
J—refraction LP: lastPacketBuffer
[O—~ransmutation

MT: MetaSocketThread RS: RecvMSocket

2 E getStatus()

f.\q put()

-
4
get() -
put
\ bi ‘,‘
\, JoinGroup()
4 glose eceive

surpadig 1oL

receive()

joinGroup(
leaveGroup
close()
insertFiIter()
removeFilter
(b)
Fltr: Filter - » dependency

SS: SendMSocket —p packet flow direction

§ thread

Figure 4. MetaSocket internal architecture: (a) MetaSendMSocket, a send-only metamorphic multicast
socket; (b) MetaRecvMSocket, a receive-only metamorphic multicast socket.

packet buffer. Next, it sets the new filter’s source packet buffer to the destination packet
buffer of the previous filter in the pipeline. Finally, it starts the new filter. The removeFilter()
transmutation also consists of three operations. First, it stops the filter that should be removed.
Next, it flushes all the packets out of the filter’s destination packet buffer and destroys the
filter. Finally, it removes the filter from the pipeline and sets the source packet buffer of the
next filter to the destination packet buffer of the previous filter in the pipeline. The getStatus()
returns a list of filters IDs currently configured in the pipeline.

Sender Operation. Let us consider the sender, as shown in Figure 4(a). At the time of
metafication, a SendMSocket component is encapsulated by the MetaSendMSocket component.
Among other actions, the send() invocation of SendMSocket is replaced by a new send()
invocation defined by the meta-level component. After metafication, any call to the base-
level send() invocation is delegated to the meta-level send() invocation. This invocation adds a
terminator header to the datagram packet it receives, which identifies packets that are ready
for delivery to the application by the receiver. Next, the meta-level send() invocation stores this
packet in firstPacketBuffer (the first packet buffer of the pipeline). Initially, both firstPacketBuffer
and lastPacketBuffer refer to the same packet buffer. While lastPacketBuffer may change as new
filters are inserted, always pointing to the last packet buffer in the pipeline, firstPacketBuffer
remains fixed. When SendMSocket is metafied by MetaSendMSocket, a thread is created and
assigned to the SendMSocket send() invocation. This thread loops, retrieving a packet from
lastPacketBuffer, creating a datagram packet, and passing it to the original base-level send()

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7

Prepared using speauth.cls

8 S. M. SADJADI, P. K. MCKINLEY, E. P. KASTEN, Z. ZHOU
&

invocation, which in turn transmits the packet to the multicast group using the send() method
of the underlying MulticastSocket base class.

Receiver Operation. On the receiver, as shown in Figure 4(b), a MetaRecvMSocket
encapsulates a base-level RecvMSocket component. The receiver can be added to the multicast
group, either before or after metafication, by calling its joinGroup() invocation. Once metafied, a
thread is assigned to the RecvMSocket receive() invocation. The thread loops continuously, calling
receive() and placing the returned packet in firstPacketBuffer. The order of filters on the receiver
is the mirror image of that on the sender with function inverted. Each filter in the pipeline
processes a packet from its source packet buffer and places it in its destination packet buffer.
Similar to the send() invocation on the sender, metafication replaces the base-level receive()
invocation with the meta-level receive() invocation defined by MetaRecvMSocket. Instead of
calling the RecvMSocket receive() invocation, the MetaRecvMSocket receive() invocation retrieves
packets directly from lastPacketBuffer. Before returning the packet to the caller, however, the
receive() invocation checks the packet’s MetaSocket header. If a terminator header is found at
the beginning of the packet, then receive() removes this header and returns the original packet to
the caller. Otherwise, additional filter processing needs to be performed on the packet before
delivering it to the application. In this case, receive() generates a FilterMismatchEvent event
containing the packet and the position of the required Filter in the filter pipeline. (Every Filter
at the receiving side performs a similar task and compares the filter ID of the next packet to
its ID.) This event is sent to the EventMediator, a singleton component in each addresss space
that decouples event generators from event listeners [13]. The receive() invocation waits until
the event has been handled, meaning that the needed filter has been inserted in the pipeline
using the insertFilter() transmutation. In this manner, filters developed by third parties are not
required to handle any packet headers other than their own. This logic is encapsulated in the
other components of the MetaSockets. Additional details on event handling are discussed in
the next section.

3.2. Syntax of Absorption and Metafication

Figure 5 shows simplified Adaptive Java code for the SendMSocket component. A constructor
is defined for this component that creates a new MulticastSocket and sets it as the base-level
object for this component. Note that the base-level object is treated as a secret of the base-level
component. A component that uses the SendMSocket component does not necessarily need to
know anything about the underlying MulticastSocket or its interface. Two invocations, send()
and close() are defined, but they simply call their associated methods from the base object.
The code for RecvMSocket is similar. Once defined, SendMSocket and RecvMSocket can be used
via their invocations.

The metafication of these base-level components can be defined at development time or
later, at run time. Simplified code for MetaSendMSocket is shown in Figure 6. At any point
during the execution of the application, a running SendMSocket component can be metafied by
calling its constructor. The instance of SendMSocket passed to the constructor of this meta-
component is designated as the base-level component. As described earlier, in addition to
refractions and transmutations, an invocation, send(), is redefined in this meta-level component.

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

SRE METASOCKETS: ARCHITECTURE AND OPERATION 9

public component SendMSocket
absorbs java.net.MulticastSocket {

/* constructor */
public SendMSocket(...) {
setBase(new MulticastSocket(...));}

/* invocations */

public invocation void send(...) {
base.send(...); }

public invocation void close() {
base.close(); }

Figure 5. Excerpted code for SendMSocket.

Defining an invocation at the meta-level is used to replace an invocation of the base-level
component. In this example, the new invocation does not call the Java MulticastSocket send()
method. Instead, it places the packet in firstPacketBuffer defined as a private field of this meta-
component. Another private field, filterPipeline, is an instance of java.util.Vector and keeps
track of all the filters currently configured in the MetaSendMSocket. The refraction getStatus()
returns a byte array containing the IDs of these filters. The transmutations insertFilter() and
removeFilter() are used to insert and remove filters at specified positions in the filter pipeline.
The code for MetaRecvMSocket is similar to that of MetaSendMSocket. In this case, however, the
receive() invocation is redefined in the meta-level. In the new definition of this invocation, a
packet from the lastPacketBuffer, if available, is delivered to the caller.

4. Adaptive Functionality in MetaSockets

The Java MulticastSocket class is used in many distributed applications. The MetaSockets
described in the previous section provide the same imperative functionality to applications and
can be used in place of regular Java sockets. In this section, we use an example Adaptive Java
application to demonstrate how MetaSockets can further provide adaptive functionality by
interacting with other supporting components, such as decision makers and event mediators.
A key concept in this approach is that the adaptive functionality, whether it be related to
quality-of-service, fault tolerance, or security, is not tangled with the application code. Rather,
the “base” application code uses only invocations provided by MetaSockets, while the code
that manipulates the behavior of MetaSockets is localized. This separation of concerns [9],
depicted in Figure 7, leads to code that is easier to maintain and evolve to incorporate new
adaptive functionality. In the following example, we use MetaSockets to support adaptable
quality-of-service by reacting to changes in the quality of the wireless channel.

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

10 S. M. SADJADI, P. K. MCKINLEY, E. P. KASTEN, Z. ZHOU SPE
&

public component MetaSendMSocket
metafy SendMSocket {

/* constructor */
public MetaSendMSocket (SendMSocket s)
{ setBase(s); }

/* replacing the SendMSocket.send() */
public invocation void send(...) {...
firstPacketBuffer.put(packet); ...}

/* refractions */
public refraction byte[] getStatus() {
return filterPipeline.getStatus(); }

/* transmutations */

public transmutation void
insertFilter(int pos, Filter f) {...
filterPipeline.add(pos, £f); ...}

public transmutation Filter
removeFilter(int pos) {...
return filterPipeline.remove(pos); }

/* private fields */

private Vector filterPipeline =
new Vector();

PacketBuffer firstPacketBuffer =
new PacketBuffer();

}

Figure 6. Excerpted code for MetaSendMSocket.

4.1. ASA Architecture and Operation

In this study, we modified an audio streaming application (ASA) to use MetaSockets instead
of regular Java sockets, and we added components to manage the adaptive behavior. We then
experimented with ASA by streaming live audio from a desktop workstation to multiple iPAQ
handheld computers over an 802.11b wireless local area network (WLAN). The experimental
configuration is depicted in Figure 8.

The ASA code comprises two main parts. On the sending station, the Recorder uses the
javax.sound package to read live audio data from a system’s microphone. The audio encoding
uses a single channel with 8-bit samples. The Recorder multicasts this data to the receivers
via a wireless access point using the send() invocation of a MetaSocket. Each packet contains
128 bytes, or 16 milliseconds of audio data; relatively small packets are necessary to reduce

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

METASOCKETS: ARCHITECTURE AND OPERATION 11
&

MulticastSocket @ Adaptive Code

Adaptive Logic
(DM, M, ...)

Figure 7. Example of separation of concerns using MetaSockets.

X iy -8
: Audio Stream = .

[

-
ot » ~ -
-

] IS "
Wired Access Wireless
Sender Point Receivers

Figure 8. Physical experimental configuration.

jitter and minimize losses. On each receiving station, the Player receives the audio data using
the receive() invocation of a MetaSocket and plays the data using the javax.sound package.
Figure 9 illustrates the major parts of the receiving side of the ASA; the sending side has a
similar structure. Note that we introduce new notations to distinguish the type of interactions
among components (One for invocations and another for refractions and/or transmutations).
Most of the receiving system executes on an iPAQ handheld computer, but one program, called
a Trader, executes on a desktop workstation. The two systems communicate over the WLAN.
In Adaptive Java, each address space comprises one or more components, each of which in turn
may comprise several interacting components. The program running on the iPAQ in Figure 9
comprises five main components: a Player, a DecisionMaker, an EventMediator, a ComponentLoader,
and a MetaRecvMSocket. Except for the Player component, which is specific to ASA, the other
components are part of the AdaptiveJava component infrastructure, which can be reused in any
other application. The MetaRecvMSocket contains several components that together implement
the filter pipeline. As indicated, some of these components are metafied and therefore offer
refractive and transmutative interfaces, whereas others are simple base-level components that

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

12 S. M. SADJADI P. K. MCKINLEY, E. P. KASTEN, Z. ZHOU
&

LP: lastPacketBuffer
PB: PacketBuffer

FP: firstPacketBuffer

Event RS: RecvMSocket
Mediator

(EM) AL: RecvAppLossDetector
FD: FECDecoder

surppdid 131y

NL: RecvNetLossDetector

MT: MetaSocketThread

=% Dependency
—» Event propagation
Reflection
i S Pid '_ Invocation
i S -7
| T f) -

~ “’ I'T Ref. and Trans.
Wired Network o Wireless Network E ;

Thread

Figure 9. Interaction among components in the Audio Streaming Application.

offer only invocations to other components. The flow of events among components, via an
EventMediator, is also shown.

A DecisionMaker (DM) is an optional subcomponent within any Adaptive Java component.
According to a set of rules applied to the current situation, a DM controls all of the
nonfunctional behavior of the subcomponents of its container component. DMs are arranged
hierarchically, such that a given DM inherits rules from a higher-level DM and might provide
rules to lower-level DMs. (In our simple example application, the main component on the iPAQ
contains a single DM.) Depending on its rules and the current situation, a DM might decide to
metafy or change the configuration of an existing component by invoking transmutations of the
component. A transmutation might simply set the value of an internal variable, or might involve
the insertion or removal of a subcomponent (such as a filter, in our example). In the insertion
case, the DM contacts the ComponentLoader (CL) and requests the needed component. The CL
is unique to an address space. If the CL does not find the component in its cache, it sends a
request to a component Trader, which may reside on another computing system. The Trader
returns a component implementation corresponding to a syntactic or semantic component
request. In our current implementation, we use simple identifiers to search for components.
Eventually, the CL uses the java.lang.ClassLoader to load this implementation, creates
an instance of this class, and returns it to the local DM. The ability to dynamically load
components is especially important for mobile devices, where resources might be limited and
overhead should be minimized.

Components can interact directly via invocations, refractions and transmutations. To
support asynchronous interactions, we implemented an event service. An EventMediator (EM)

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

METASOCKETS: ARCHITECTURE AND OPERATION 13
&

ENCODED RECEIVED
DATA DATA
> D
SOURCE X > RECONSTRUCTED
DATA ;E > ‘ DATA

g > D
——i=
v > @

Figure 10. Operation of block erasure code.

decouples event generators from event listeners [13]. The ASA sender and receiver each contain
a single EM that handles all events in the respective program. A listener registers its interest
in an event by calling the EM’s registerInterest() invocation. When an event is detected by
a component, it calls the notify() invocation of the EM. The EM records the event and
subsequently alerts all listeners by calling their notify() invocations. To complete the earlier
discussion on missing filters, let us consider the situation in which the thread in the receive()
meta-level invocation detects that another filter needs to be configured in the pipeline. A
FilterMismatchEvent event is sent to the EM, which forwards it to the DM. The DM decides to
insert a new filter based on information carried by the event and the pipeline status retrieved
using the getStatus() refraction. The DM requests the CL to load the missing filter, after which
the DM inserts it at the proper location in the pipeline.

4.2. Filter Components

A number of commonly used filters have been developed and added to the AdaptiveJava filter
library. In this case study, we used only two types of filters in MetaSockets. The first type
provides forward error correction (FEC) encoding and decoding functionality. The second
type is used to monitor packet loss conditions and to forward events of interest to the DM. In
turn, the DM may decide to insert, remove, or modify an FEC filter.

FEC is widely used in wireless networks, where factors such as signal strength, interference,
and antennae alignment produce dynamic and location-dependent packet losses. In current
wireless LANSs, these problems affect multicast connections more than unicast connections,
since the 802.11b MAC layer does not provide link-level acknowledgements for multicast
frames. FEC can be used to improve reliability by introducing redundancy into the data
channel. Our filters use (n, k) block erasure codes [14]. As shown in Figure 10, k source packets
are converted into a group of n encoded packets, such that any %k of the n encoded packets can
be used to reconstruct the k source packets [14]. These codes are ideal for wireless multicasting,
since a single set of parity packets can correct different packet losses among receivers.

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

14 S. M. SADJADI, P. K. MCKINLEY, E. P. KASTEN, Z. ZHOU SPE
&

getSrcPacketBuffer() getSrcPacketBuffer()

getDstPacketBufter() getDstPacketBuffer()

getNK() getNK()
K FilterMismatchEvent K

FECMismatchNKEvent

start() @ start()

stop() stop()

@
setSrcPacketBuffer() setSrcPacketBuffer()
setDstPacketBuffer() setDstPacketBuffer()
setNK() setNK()
(a) MetaFECEncoder (b) MetaFECDecoder

M— refraction FE: FECEncoder - dependency

O— transmutation FD: FECDecoder —p event
invocation $ thread

Figure 11. Design of forward error correction filters.

The FECEncoder and FECDecoder components are extended from the Filter component and
use a Java FEC package. The FECEncoder runs on the sender. This component retrieves k
packets from its source packet buffer, generates n — k parity packets, and places the original
k packets plus the n — k parity packets into its destination packet buffer. The FECDecoder
runs at the receiving side and retrieves up to k packets from its source packet buffer, decodes
them if possible, and places the recovered original k£ packets in its destination packet buffer.
Any unneeded parity packets are simply dropped. If fewer than &k out of the n packets arrive,
for a given FEC group, then the FECDecoder retrieves any data packets and places them into
its destination packet buffer. The MetaFECEncoder and MetaFECDecoder, shown in Figure 11,
metafy the FECEncoder and FECDecoder components, respectively. Each provides a getNK()
refraction and setNK() transmutation, which are used at run time to read and set the values of
n and k. If a packet arrives with a different n or k value than is expected, the MetaFECDecoder
fires a FECMismatchNKEvent event. In response, the DM uses setNK() transmutation and adjusts
the values for k and n appropriately.

The second type of filter used in our case study monitors events related to packet loss
rate and reports these to the DM. We developed two sets of filters. The SendNetLossDetector
and RecvNetLossDetector filters monitor the raw loss rate of the wireless channel. The
SendAppLossDetector and RecvApplossDetector filters monitor the packet loss rate as observed
by the application, which may be lower than the raw packet loss rate due to the use of
FEC. The metafied versions of these filters is shown in Figure 12. In our experiments,
SendAppLossDetector is used as the first filter on the sender side, and RecvApplossDetector is
used as the last filter on the receiver. Conversely, SendNetLossDetector is the last filter on the
sender, and RecvNetLossDetector is the first filter on the receiver. The sender’s filters simply

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

METASOCKETS: ARCHITECTURE AND OPERATION 15

getSrcPacketBuffer() getSrcPacketBuffer() getSrcPacketBuffer()
getDstPacketBuffer() getDstPacketBuffer()
getLossVector()

getSrcPacketBuffer()
getDstPacketBuffer() getDstPacketBuffer()

- —— getLossVector()
FilterMismatchEvent /\
AcceptedLossRateEvent,

FilterMismatchEvent
UnAcceptedLossRateEvent

start()
stop()

start()
stop()

start()
stop()

start()
stop()

setSrcPacketBuffer()
setDstPacketBuffer(), setInform()
resetLossVector(), setLowerBound()

setSrcPacketBuffer()
setDstPacketBuffer(), setInform()
resetLossVector(), setUpperBound()

setSrcPacketBuffer()
setDstPacketBuffer()

setSrcPacketBuffer()
setDstPacketBuffer()

(a) MetaSendNetLossDetector (b) MetaRecvNetLossDetector (c) MetaSendAppLossDetector (d) MetaRecvAppLossDetector

_A| refraction SN: SendNetLossDetector - . dependency

OI transmutation RN: RecvNetLossDetector —p event
invocation SA: SendAppLossDetector § thread

RA: RecvAppLossDetector

Figure 12. Design of packet loss monitoring filters.

prepare packets by prepending a header containing the identifier of the corresponding peer
filter on the receiver. Each filter on the receiver uses sequence numbers to calculate the packet
loss rate over a specified window in the packet stream and stores this information in a vector.
Metafying these components provides refractions and transmutations to read the current loss
rate and to set or change upper and lower thresholds with respect to the loss rate.

The sender’s DM (the global DM) and the receiver’s DM (the local DM) work together
and use a simple set of rules to make decisions about the use of filters and changes in their
behavior. If the loss rate observed by the application rises above a specified threshold, then the
global DM can decide to insert an FEC filter in the pipeline or modify the (n, k) parameters
of an existing FEC filter. On the other hand, if the raw packet loss rate on the channel drops
below a lower threshold, then the level of redundancy may be decreased, or the FEC filter
may be removed entirely. To realize this behavior, the local DM uses the setUpperBound()
and setLowerBound() transmutations of the metafied filters. The local DM also configures the
MetaRecvAppLossDetector to generate an UnacceptableLossRateEvent if the observed loss rate rises
too high, by calling the setInform(true) transmutation. When this event fires, the global DM
will eventually take action and attempt to reduce the observed loss rate by inserting an FEC
filter or changing the parameters of an existing FEC filter. After firing such an event, the
local DM calls setlnform(false) for the MetaRecvAppLossDetector to suppress further events from
this filter. At this time, the local DM also calls setInform(true) for the MetaRecvNetLossDetector,
so that an AcceptableLossRateEvent will fire if the network loss rate returns to a satisfactory
level. When this event fires, depending on its rules, the global DM can decide to reduce the
n-to-k ratio or to remove the FEC filter entirely. As in the first case, the local DM also calls
setInform(false) for the MetaRecvNetLossDetector to suppress further events. Any time a filter is
inserted or removed on the sender, a FilterMismatchEvent will eventually fire on the receiver,
causing the filter pipeline at the receiver to be adjusted accordingly.

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2006; 00:1-7
Prepared using speauth.cls

16 S. M. SADJADI P. K. MCKINLEY, E. P. KASTEN, Z. ZHOU
&

In the next section, we demonstrate how insertion and removal of FEC filters adapt the
behavior of MetaSocket to respond dynamically to the changes in the wireless network. For
experimental results on the effect of changes in the n and k parameters on the quality of service
and energy consumption of mobile devices, please refer to [15].

5. Performance Evaluation

To evaluate the effect of MetaSockets on the performance of audio streaming, we conducted
several experiments using ASA. First, we report the effect of using MetaSockets in an
environment with simulated packet loss, followed by results with real packet loss on a
mobile computing testbed. We note that, while MetaSocket reconfiguration incurs processing
overhead, the results reported in this section demonstrate that the overhead is not significant
enough to affect the real-time behavior of the audio-streaming application.

5.1. Adapting to Simulated Packet Loss

One well-known difficulty in conducting experimental research in wireless environments is the
ability to reproduce results, given the highly dynamic nature of the medium [16]. In this set
of tests, we created artificial losses by dropping packets in software according to a predefined
loss function. In this way, we are able to compare the effects of different parameter settings on
the behavior of MetaSockets.

In this experiment, the Recorder program is configured to record 8000 samples per
second of live audio, using a single channel at 8 bits per sample. Samples are collected
into 128-byte packets packets, that is, each packet contains 16 milliseconds of audio data.
We used (8,4) FEC filters. The upper threshold for the RecvAppLossDetector to generate
an UnAcceptableLossRateEvent is 30%, and the lower threshold for the RecvNetlLossDetector to
generate an AcceptableLossRateEvent is 10%.

Figure 13 plots packet loss as observed by the two loss monitoring filters on the receiver.
The Network Packet Loss curve experiences two periods of high packet loss. The Application
Packet Loss curve shows the effect of dynamic insertion and removal of the FEC filter,
according to the rules described in Section 4.2. When the program begins execution, the sender
inserts a SendAppLossDetector filter into its MetaSocket, which quickly causes the receiver to
insert the corresponding RecvAppLossDetector. At packet set 8 (meaning the 800th packet), the
RecvAppLossDetector filter detects that the loss rate has passed the upper threshold. The filter
fires an UnAcceptableLossRateEvent, causing the local DM to request an FEC filter. The global
DM decides, based on its set of rules, to insert two filters, an FECEncoder filter with default
parameters n = 8 and k = 4, and a SendNetLossDetector filter, at the second and third positions
in the MetaSendMSocket filter pipeline, respectively. When packets containing the headers of the
two new filters begin arriving at the receiver, the RecvAppLossDetector detects a packet header
that does not match its own identifier. Therefore, it fires a FilterMismatchEvent at two different
times, one for each new packet type. These events result in the insertion of a RecvNetLossDetector
filter and a FECDecoder filter at the first and second positions in the MetaRecvMSocket filter
pipeline, respectively.

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

SPE METASOCKETS: ARCHITECTURE AND OPERATION 17
&

Network Packet Loss vs. Application Packet Loss

|- Network Packet Loss
K Application Packet Loss

30 q

N
15}

Packet Loss Rate (percentage)
- o
o &

>

a
-+
a

£

o

nﬂ
7 Qb{sp

o

Packet Set (100 packets per set)

Figure 13. MetaSocket performance in an environment with real packet loss.

As shown in Figure 13, the (8,4) FEC code is very effective in reducing the packet loss
rate as observed by the application from packet set 8 to packet set 45. At packet set 45, the
RecvNetLossDetector detects that the loss rate has dipped below the 10% lower threshold, so it
fires an AcceptableLossRateEvent. In response, the local DM sends a request to the global DM to
remove the FEC filter. The DM complies, since under low-loss conditions, the 100% overhead
of an (8,4) FEC code simply wastes bandwidth. It also removes the SendNetLossDetector filter
in order to minimize data stream processing under favorable conditions. The arrival of packets
without the two headers produces two FilterMismatchEvent events at the receiving side, and the
peer filters are removed. As a result, the loss rate experienced by the application is again the
same as the network loss rate. At packet set 60, the FEC filter is again inserted, due to high
loss rate, and it is later removed at packet set 80. Considering Figure 13 as a whole, we see that
the loss rate observed by the application is very low, with the exception of two brief spikes.
In order to minimize overhead, FEC is applied only when necessary. This example illustrates
how Adaptive Java components can interact at run time to recompose the system in response
to changing conditions. While a task such as FEC filter management can be implemented in
an ad hoc manner, run-time metafication in Adaptive Java enables such concerns to be added
to the system after it is already deployed and executing.

5.2. Adapting to Real Packet Loss

Figure 14 provides a trace of an experiment, with real packet losses, that demonstrates how
MetaSockets adapt to loss rates due to user motion. One user sits at a desktop workstation in
our research lab and speaks, while another listens on an iPAQ as he moves about an adjacent
hallway. The loss rate is very high while the user is moving. In this particular test, the iPAQ

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

18 S. M. SADJADI, P. K. MCKINLEY, E. P. KASTEN, Z. ZHOU SPE
&

Network Packet Loss vs. Application Packet Loss

55

50 4
45 —=—Network Loss Rate

Application Loss Rate | |

Packet Loss Rate (Percentage)
n
[6)]
|
—

Packet Set (100 packets per set)

Figure 14. MetaSocket performance in an environment with real packet loss.

user stood outside the lab for approximately 30 seconds, walked up and down the hall for
another 90 seconds, then stood relatively still for another 30 seconds. The upper threshold
for the RecvApplLossDetector to generate an UnAcceptableLossRateEvent is 10%, and the lower
threshold for the RecvNetLossDetector to generate an AcceptableLossRateEvent is 1%. Figure 14
plots the packet loss as observed by the two loss monitoring filters on the receiver iPAQ. When
the program begins execution, the sending process inserts a SendAppLossDetector filter into its
MetaSocket, which quickly causes the receiver to insert the corresponding RecvAppLossDetector.
As shown in the Figure 14, the loss rate is low at the beginning of the test, then increases quickly
when the user starts walking. The RecvAppLossDetector filter detects that the loss rate has passed
the upper threshold of 10% and fires an UnAcceptableLossRateEvent. The DM decides, based on
its set of rules, to insert two filters, an FECEncoder filter with default parameters (n = 20
and k = 4 in this particular test), and a SendNetLossDetector filter. When packets containing
the headers of the two new filters begin arriving at the receiver, the RecvApplossDetector
detects a packet header that does not match its own identifier. It fires a FilterMismatchEvent
at two different times, one for each new packet type. These events result in the insertion of a
RecvNetLossDetector filter and a FECDecoder filter in the opposite order as at the sender.

As shown in Figure 14, the (20,4) FEC code is effective in reducing the packet loss rate
as observed by the application. The average loss rate in the absence of FEC filters is about
16%, while in the presence of FEC filters the loss rate is improved to 3.5%. Near packet
15,200 the RecvNetLossDetector detects that the loss rate has dipped below the 1% lower
threshold, so it fires an AcceptableLossRateEvent. In response, the local DM sends a request to
the global DM to remove the FEC filter. The DM complies, since under low-loss conditions, the
high overhead of an (20,4) FEC code simply wastes bandwidth and energy. It also removes

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

METASOCKETS: ARCHITECTURE AND OPERATION 19
&

the SendNetLossDetector filter in order to minimize data stream processing under favorable
conditions. The arrival of packets without the two headers produces two FilterMismatchEvent
events at the receiving side, and the peer filters are removed. As a result, the loss rate
experienced by the application is again the same as the network loss rate for the remainder of
the experiment. In our ongoing studies, we are investigating such adaptive behavior and the
role of other concerns, such as security policies and remaining battery lifetime, which affect
the relative importance of QoS.

Figure 15 shows a trace of an experiment that demonstrates how MetaSockets adapt to loss
rates that depend on receiver location, relative to the source. On average, the loss rate without
adaptation is about 26%, while with adaptation is about 8%. A stationary user speaks into
a laptop microphone, while another user listens on an iPAQ as he moves among locations in
the wireless cell. In this particular test, the iPAQ user remains in a low packet loss area for
approximately 30 minutes, moves to a high packet loss area for another 40 minutes, moves
back to the low packet loss location for another 30 minutes, then reenters the high packet
loss location. He remains there until the iPAQ’s external battery drains and the WNIC is
disconnected. As shown in Figure 15, the FEC (4,2) code is effective in reducing the packet
loss rate as observed by the application. In this experiment, the upper threshold for the
RecvApplLossDetector to generate an UnAcceptableLossRateEvent is 20%, and the lower threshold
for the RecvNetLossDetector to generate an AcceptableLossRateEvent is 5%. Moreover, the upper
threshold for the LifeTimeEstimate to generate an AcceptableLifeTimeEvent is 200 minutes, and
the lower threshold to generate an UnAcceptableLifeTimeEvent is 170 minutes. When the user
first enters the high loss area, at time 30, the RecvAppLossDetector filter detects that the loss
rate has passed the upper threshold of 20% and fires an UnAcceptableLossRateEvent. The DM
decides, based on its set of rules, to insert an FECEncoder filter, resulting in reducing the packet
loss rate. When the user moves back to the low loss area at time 70, the DM decides to remove
the FECEncoder, since the overhead of FEC simply wastes bandwidth and energy. At time
137, the LifeTimeEstimate determines that the remaining battery capacity is not sufficient for
maintaining the communication between users while providing QoS support through FEC. In
response, an UnAcceptableLifeTimeEvent is fired and the DM decides to remove the FECEncoder.
We also measured the remaining battery capacity during the above experiment and for a
non-adaptive trace. The adaptive version extends the battery lifetime by approximately 27
minutes.

6. Related Work

In this section, we identify and discuss three categories of projects related to Adaptive Java
and MetaSockets.

The first category includes middleware projects that support adaptive behavior in Java
programs by extending the Java Virtual Machine. Examples include Iguana/J [17], Meta
Java [18], JDrums [19], Guarand on Java [20], PROSE [21], and R-Java [22]. A major benefit of
implementing adaptation in this way is that the execution of virtually any bytecode instruction
can be intercepted within a customized JVM. In contrast, only messages originally targeted for
Java sockets can be intercepted and adapted dynamically using MetaSockets. However, some

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

20 S. M. SADJADI, P. K. MCKINLEY, E. P. KASTEN, Z. ZHOU SPE
&

Network Packet Loss vs. Application Packet Loss

70 | —=Network Packet Loss
‘ Application Packet Loss

1

el Ll

D
o
I

(4]
o
I

W
o
-

n
o
I

Packet Loss Rate (Percentage)
ey
o
.

o
I

o
159
21

T
- 8 ®» ¥ b © K ©» » o ®
Total Battery Lifetime, (Packet Set: 960 packets per set)

141 A
151 1
161

Figure 15. MetaSocket performance in an environment with real packet loss.

researchers have noted that fine-grained interception at the JVM level can produce significant
performance overhead. For example, according to [17], the time for common operations such as
creating new objects can be increased by an order of magnitude. Another advantage of JVM-
supported adaptation is that it is usually transparent to the target Java program (no code
modification required). On the other hand, using a custom JVM tends to limit portability.
Since our implementation of Adaptive Java uses source-to-source compilation, MetaSockets
can execute atop any standard JVM. Moreover, to address the transparency issue, we have
recently developed a generator framework, called TRAP/J [23], which enables adaptable
components such as MetaSockets to be woven into existing Java programs without modifying
the application source code.

The second category includes projects that use aspect-oriented programming [9] to weave
adaptive code into functional code. Although many projects in the AOP community address
compile-time weaving [24], a growing number of projects focus on run-time composition [25-30].
By defining a reflection-based component model, Adaptive Java also supports run-time
reconfiguration but is not restricted to the AOP model, which requires identification of
predefined “pointcuts” at compile time. A related concept is composition filters [31], which
provide a mechanism for disentangling the cross-cutting concerns of a software system. This
system declares filters that intercept messages received and sent by objects. As such, messages
can be massaged and checked before they are delivered to an object, separating aspects,
such as security authentication or bounds checking, from the objects that send and receive
these messages. Adaptive Java’s approach to composition using encapsulation could be used
to instantiate a message filtering design where components are extended and invocations
added such that a call to an invocation would be filtered through subsequent encapsulation

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

METASOCKETS: ARCHITECTURE AND OPERATION 21
&

layers. However, such a design would not have the source code expressiveness provided by the
declarative specification language in composition filters.

The third category of related work includes projects that, like Adaptive Java, extend the Java
syntax and provide new constructs to allow developers to write adaptable applications more
expressively. Examples include PCL [32], Open Java [33], R-Java [22], and Handi-Wrap [34].
Open Java provides an approach supporting customized compilers that define new compile-
time MOPs [35]. For example, to support writing expressive programs that use a set of design
patterns, Open Java enables a developer to build a customized compiler that understands the
new syntax. The PCL project [32] also focuses on language support for run-time adaptability.
Our concept of “wrapping” classes with base components is similar to the use of Adaptors used
in PCL. However, modification of the base class in PCL appears to be limited to changing
variable values, whereas Adaptive Java transmutations can modify arbitrary structures or
subcomponents. Moreover, by combining encapsulation with metafication, Adaptive Java can
be used to realize adaptations in multiple meta-levels.

7. Conclusions and Future Directions

In this work, we investigated the use of of Adaptive Java to support run time adaptation
in iPAQ handheld computers used as audio “communicators.” Our study focused on an
adaptable component called the MetaSocket. We described in detail how adaptive behavior
is implemented and how MetaSockets interact with other adaptive components, including
decision makers and event mediators. Results from experiments on a mobile computing testbed
demonstrate the effectiveness of these methods in responding to dynamic wireless channel
conditions. It is our hope that the details of this design, combined with the case study, will be
useful to other researchers and developers who are interested in language-supported, run-time
adaptability for distributed object-oriented systems.

As part of our ongoing research, we have developed a software tool, called TRAP/J [36],
that enables new adaptable behavior to be added to existing Java applications transparently
(that is, without modifying the application source code and without modifying the JVM). The
generation process combines behavioral reflection and aspect-oriented programming to achieve
this goal. Specifically, TRAP/J enables the developer to select, at compile time, a subset of
classes in the existing program that are to be adaptable at run time. TRAP/J then generates
specific aspects and reflective classes associated with the selected classes, producing an adapt-
ready program. As the program executes, new behavior can be introduced via interfaces to the
reflective classes.

While this paper demonstrated the application of MetaSockets to a specific communication
service, we emphasize that these mechanisms are general. Any component in the system can
be metafied and adapted at run time. Currently, we are investigating the use of Adaptive Java
and TRAP/J to address other key areas where software adaptability is needed in distributed
systems: dynamically changing the fault tolerance properties of components, adaptive security
policies dynamically woven across components, mitigation of the heterogeneity of system
display characteristics, and energy management strategies for battery-powered devices.

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

22

S. M. SADJADI, P. K. MCKINLEY, E. P. KASTEN, Z. ZHOU
&

FURTHER INFORMATION

A

number of related papers and technical reports can be found at the following URLs:

http://www.cse.msu.edu/sens and http://www.cs.fiu.edu/acrl. Papers and other results related

to

the RAPIDware project, including a download of the MetaSockets and Adaptive Java source code,

are available at http://www.cse.msu.edu/rapidware.

ACKNOWLEDGEMENTS

This work was supported in part by the U.S. Department of the Navy and Office of Naval Research
(ONR) grant number N00014-01-1-0744 and in part by National Science Foundation (NSF) grant
numbers CCR-~9912407, EIA-0000433, EIA-0130724, and ITR-0313142.

REFERENCES

10.

11.

12.
13.

14.

15.

16.

. P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng, “Composing adaptive software,” IEEE
Computer, pp. 56—64, July 2004. For more information, please refer to the technical report.

. D. C. Schmidt, D. L. Levine, and S. Mungee, “The design of the TAO real-time object request broker,”
Computer Communications, vol. 21, pp. 294-324, April 1998.

. F. Kon, M. Romén, P. Liu, J. Mao, T. Yamane, L. C. Magalhies, and R. H. Campbell, “Monitoring,
security, and dynamic configuration with the dynamicTAO reflective ORB,” in Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms (Middleware 2000), (New York),
April 2000.

. J. A. Zinky, D. E. Bakken, and R. E. Schantz, “Architectural support for quality of service for CORBA
objects,” Theory and Practice of Object Systems, vol. 3, no. 1, 1997.

. G. S. Blair, G. Coulson, P. Robin, and M. Papathomas, “An architecture for next generation middleware,”
in Proceedings of the IFIP International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware’98), (The Lake District, England), September 1998.

. T. Ledoux, “OpenCorba: A reflective open broker,” Lecture Notes in Computer Science, vol. 1616, 1999.

. R. Baldoni, C. Marchetti, A. Termini, “Active software replication through a three-tier approach,” in
Proceedings of the 22th IEEE International Symposium on Reliable Distributed Systems (SRDS02),
(Osaka, Japan), pp. 109-118, October 2002.

. E. Kasten, P. K. McKinley, S. Sadjadi, and R. Stirewalt, “Separating introspection and intercession
in metamorphic distributed systems,” in Proceedings of the IEEE Workshop on Aspect-Oriented
Programmang for Distributed Computing (with ICDCS’02), (Vienna, Austia), July 2002.

. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J. M. Loingtier, and J. Irwin,

“Aspect-oriented programming,” in Proceedings of the FEuropean Conference on Object-Oriented

Programmaing (ECOOP), Springer-Verlag LNCS 1241, June 1997.

B. C. Smith, “Reflection and semantics in Lisp,” in Proceedings of 11th ACM Symposium on Principles

of Programming Languages, pp. 23—-35, 1984.

P. Maes, “Concepts and experiments in computational reflection,” in Proceedings of the ACM Conference

on Object-Oriented Languages (OOPSLA), December 1987.

S. E. Hudson, ed., CUP User’s Manual. Usability Center, Georgia Institute of Technology, July 1999.

J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and M. Spiteri, “Generic support

for distributed applications,” IEEE Computer, vol. 33, no. 3, pp. 68—76, 2000.

L. Rizzo, “Effective erasure codes for reliable computer communication protocols,” ACM Computer

Communication Review, April 1997.

Z. Zhou, P. K. McKinley, and S. M. Sadjadi, “On quality-of-service and energy consumption tradeoffs

in fec-enabled audio streaming,” in Proceedings of the 12th IEEE International Workshop on Quality of

Service (IWQoS 2004), (Montreal, Canada), June 2004. Winner of the IWQoS 2004 best student paper

award.

D. A. Eckhardt and P. Steenkiste, “A trace-based evaluation of adaptive error correction for a wireless

local area network,” Mobile Networks and Applications, vol. 4, no. 4, pp. 273-287, 1999.

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

METASOCKETS: ARCHITECTURE AND OPERATION 23
&

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

B. Redmond and V. Cahill, “Supporting unanticipated dynamic adaptation of application behaviour,” in
Proceedings of the 16th European Conference on Object-Oriented Programming, June 2002.

M. Golm, “Design and implementation of a meta architecture for Java,” Master’s thesis, Friedrich-
Alexander-University, Erlangen-Nurenburg, Jan. 1997.

J. Andersson and T. Ritzau, “Dynamic code update in JDrums,” in Proceedings of the ICSE’00 Workshop
on Software Engineering for Wearable and Pervasive Computing, (Limerick, Ireland), 2000.

A. Oliva and L. E. Buzato, “The implementation of Guarand on Java,” Tech. Rep. IC-98-32, IC-Unicamp,
September 1998.

A. Popovici, T. Gross, and G. Alonso, “Dynamic homogenous AOP with PROSE,” tech. rep., Department
of Computer Science, Federal Institute of Technology, Zurich, 2001.

J. de Oliveira Guimaraes, “Reflection for statically typed languages,” in Proceedings of 12th European
Conference on Object-Oriented Programming (ECOOP’98), pp. 440-461, 1998.

S. M. Sadjadi, P. K. McKinley, B. H. Cheng, and R. K. Stirewalt, “TRAP/J: Transparent generation
of adaptable Java programs,” in Proceedings of the International Symposium on Distributed Objects and
Applications (DOA’04), (Agia Napa, Cyprus), October 2004.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, “An overview of AspectlJ,”
Lecture Notes in Computer Science, vol. 2072, pp. 327-355, 2001.

E. Truyen, B. N. Joérgensen, W. Joosen, and P. Verbaeten, “Aspects for run-time component integration,”
in Proceedings of the ECOOP 2000 Workshop on Aspects and Dimensions of Concerns, (Sophia Antipolis
and Cannes, France), 2000.

F. Akkai, A. Bader, and T. Elrad, “Dynamic weaving for building reconfigurable software systems,” in
Proceedings of OOPSLA 2001 Workshop on Advanced Separation of Concerns in Object-Oriented Systems,
(Tampa Bay, Florida), October 2001.

S. Ren, M. Beckman, and T. Elrad, “System imposed and application compliant adaptation,” in
Proceedings of the Fourth IEEE International Workshop on Distributed Auto-adaptive and Reconfigurable
Systems (with ICDCS’04), (Tokyo, Japan), March 2004.

D. Wagelaar, “Towards a context-driven development framework for ambient intelligence,” in Proceedings
of the Fourth IEEE International Workshop on Distributed Auto-adaptive and Reconfigurable Systems
(with ICDCS’04), (Tokyo, Japan), March 2004.

R. Hirschfeld and K. Kawamura, “Dynamic service adaptation,” in Proceedings of the Fourth IEEE
International Workshop on Distributed Auto-adaptive and Reconfigurable Systems (with ICDCS’04),
(Tokyo, Japan), March 2004.

I. Welch and R. J. Stroud, “Kava - A Reflective Java Based on Bytecode Rewriting,” in Reflection and
Software Engineering (W. Cazzola, R. J. Stroud, and F. Tisato, eds.), Lecture Notes in Computer Science
1826, pp. 157-169, Heidelberg, Germany: Springer-Verlag, June 2000.

L. Bergmans and M. Aksit, “Composing crosscutting concerns using composition filters,” Communications
of ACM, pp. 51-57, October 2001.

V. Adve, V. V. Lam, and B. Ensink, “Language and compiler support for adaptive distributed
applications,” in Proceedings of the ACM SIGPLAN Workshop on Optimization of Middleware and
Distributed Systems (OM 2001), (Snowbird, Utah), June 2001.

M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian, “OpenJava: A class-based macro system for Java,”
in Proceedings of OORaSE, pp. 117-133, 1999.

J. Baker and W. Hsieh, “Runtime aspect weaving through metaprogramming,” in Proceedings of the first
International Conference on Aspect-Oriented Software Development, (Enschede, The Netherlands), April
2002.

D. Caromel and J. Vayssiere, “Reflections on MOPs, Components, and Java Security,” in Proceedings of
ECOOP 2001 (J. L. Knudsen, ed.), vol. 2072 of LNCS, (Budapest, Hungary), pp. 256-274, Springer-Verlag,
June 2001.

S. M. Sadjadi, P. K. McKinley, R. E. K. Stirewalt, and B. H. Cheng, “Generation of self-optimizing
wireless network applications,” in Proceedings of the International Conference on Autonomic Computing
(ICAC-04), (New York, NY), May 2004.

Copyright (© 2006 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2006; 00:1-7
Prepared using speauth.cls

	1 Introduction
	2 Adaptive Java Background
	3 MetaSocket Design and Implementation
	3.1 Internal Architecture and Operation
	3.2 Syntax of Absorption and Metafication

	4 Adaptive Functionality in MetaSockets
	4.1 ASA Architecture and Operation
	4.2 Filter Components

	5 Performance Evaluation
	5.1 Adapting to Simulated Packet Loss
	5.2 Adapting to Real Packet Loss

	6 Related Work
	7 Conclusions and Future Directions

