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Abstract

Advances in technology have enabled new approaches for sensing the environment and collecting data about the world. Once
collected, sensor readings can be assembled into data streams and transmitted over computer networks for storage and processing
at observatories or to evoke an immediate response from an autonomic computer system. However, such automated collection of
sensor data produces an immense quantity of data that is time consuming to organize, search and distill into meaningful information.
In this paper, we explore the design and use of distributed pipelines for automated processing of sensor data streams. In particular,
we focus on the detection and extraction of meaningful sequences, called ensembles, from acoustic data streamed from natural
areas. Our goal is automated detection and classification of various species of birds.

Key words: acoustics, data stream, ensemble, pattern recognition, remote sensing, time series analysis.

1. Introduction

Advances in technology have enabled new approaches for
sensing the environment and collecting data about the world; an
important application domain is ecosystem monitoring (Porter
et al., 2005; Szewczyk et al., 2004a; Martinez et al., 2004;
Szewczyk et al., 2004b; Luo et al., 2007; Qi et al., 2008).
Small, powerful sensors can collect data and extend our per-
ception beyond that afforded by our natural biological senses.
Moreover, wireless networks enable data to be acquired simul-
taneously from multiple geographically remote and diverse lo-
cations. Once collected, sensor readings can be assembled
into data streams and transmitted over computer networks to
observatories (Arzberger, 2004), which provide computing re-
sources for the storage, analysis and dissemination of environ-
mental and ecological data. Such information is important to
improving our understanding of environmental and ecological
processes. However, when data is collected continuously, auto-
mated processing facilitates the organization and searching of
the resulting data repositories. Without timely processing, the
sheer volume of the data might preclude the extraction of infor-
mation of interest. Addressing these problems will likely be-
come increasingly important as technology improves and more
sensor platforms and sensor networks are deployed (The 2020
Science Group, 2005).
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Acoustic signals have been used for many years to census
vocal organisms. For example, the North American Breeding
Bird Survey, one of the largest long-term, national-scale avian
monitor programs, has been conducted for more than 30 years
using human auditory and visual cues (Bystrak, 1981). The
North American Amphibian Monitoring Program is based on
identifying amphibian species primarily by listening for their
calls (Weir and Mossman, 2005). Recent advances in sensor
networks enable large-scale, automated collection of acoustic
signals in natural areas (Estrin et al., 2003). The systematic
and synchronous collection of acoustic samples at multiple lo-
cations, combined with measurements of ancillary data such as
light, temperature, and humidity, can produce an enormous vol-
ume of ecologically relevant data. Transmuting this raw data
into useful knowledge requires timely and effective processing
and analysis.

Acoustics as an ecological attribute has the potential to in-
crease our understanding of ecosystem change due to human
disturbance, as well as provide a measure of biological diver-
sity and its subsequent change over time (Truax, 1984; Wright-
son, 2000). The analysis of entire soundscapes may also pro-
duce valuable information on the dynamics of interactions be-
tween ecological systems in heterogeneous landscapes (Charles
et al., 1999). Moreover, timely analysis and processing enables
rapid delivery of important environmental information to those
responsible for conservation and management of our natural re-
sources, and can promote public involvement through public
access to ready information about the environments in which
we live. For instance, increased interest in renewable energy
sources has driven the development of wind resource areas and
the need to better understand the unintended impact of wind
farms on wildlife. In turn, state and federal agencies have
put forth guidelines for evaluating the potential effects that a
wind farm might have on wildlife that include acoustic moni-
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toring (Michigan Department of Labor and Economic Growth,
2005; United States Fish and Wildlife Service, 2003; Anderson
et al., 1999).

This study addresses the automated classification and detec-
tion of bird species using acoustic data streams collected in nat-
ural environments. In this context, classification attempts to ac-
curately recognize which species produced a particular vocal-
ization, while detection indicates the likelihood that an acoustic
clip contains a song voiced by a particular species. The project
is a collaboration between computer scientists and ecologists
at the Remote Environmental Assessment Laboratory (REAL)
at Michigan State University. Acoustic data is collected from
in field sensor stations located at the Kellogg Biological Re-
search Station (KBS) in Michigan and other locations, some as
far away Australia. Species classification and detection enables
the automation of ecological surveys traditionally conducted by
human observers in the field. Moreover, processing of data as it
is collected enables annotation of sensor data with meta infor-
mation that can facilitate later searching and analysis.

As shown in Figure 1, the acoustic sensor stations comprise
a pole-mounted sensor unit and a solar panel coupled with a
deep cycle battery for providing power over extended periods.
Acoustic clips are collected by the sensor units and automat-
ically transmitted to REAL over local and regional networks
(e.g. over a local wireless network to the internet). When net-
work technology is not available, manual collection may also
be used. Currently, clips are approximately 30 seconds long
and are collected every half hour. We anticipate increasing the
collection rate as computing, storage and power resources per-
mit.

Sensor collection of acoustic data enables monitoring of nat-
ural environments despite visual occlusions, such as trees or
buildings, or even darkness. Moreover, microphones can col-
lect data from all directions simultaneously. However, acous-
tic data is rich and complex. For instance, bird vocalizations
vary considerably even within a particular bird species. Young
birds learn their songs with reference to adult vocalizations
during sensitive periods (Thorpe, 1961; Tchernichovski et al.,
2004). At maturity, the song of a specific bird will crystal-
lize into a species-specific stereotypical form. However, even
stereotypical songs vary between individual birds of the same
species (Catchpole and Slater, 1995). Moreover, many vocal-
izations are not stereotypical but are instead plastic and may
change with seasons, while some species can learn new songs
throughout their lives (Brenowitz et al., 1997). Variation of
song within a species and the occurrence of other sounds in
natural settings, such as the sound of wind or that produced by
human activity, are significant obstacles to automated detection
and classification of birds. Extraction of candidate bird vocal-
izations from acoustic streams facilitates accurate recognition
of a species.

The main contribution of this paper is to introduce a process
that enables detection and extraction of meaningful sequences,
called ensembles, from acoustic data streams. Here we inves-
tigate the utility of this method to support automated detec-
tion and classification of bird species using MESO (Kasten and

McKinley, 2007), a perceptual memory1 system that supports
online, incremental learning. Results of our experiments are
promising and suggest that extraction and analysis of ensem-
bles from acoustic data may facilitate automated monitoring of
natural environments. Moreover, the extraction of ensembles
from acoustic clips reduced the amount of data to be processed
by approximately 80%.

The remainder of this paper is organized as follows. Sec-
tion 2 describes background on the components of the ensem-
ble extraction method. Section 3 describes in detail the ap-
proach for ensemble extraction, and Section 4 presents the re-
sults of our experiments using ensemble extraction for classifi-
cation and detection of bird species. Section 5 presents related
work. Finally, in Section 6, we conclude and describe future
work.

2. Background

In this section, we first review methods used to represent
and process acoustic data, including piecewise aggregate ap-
proximation (PAA) (Keogh et al., 2000; Yi and Faloutsos,
2000) and symbolic aggregate approximation (SAX) (Lin et al.,
2003). Second, we describe a prototype system, Dynamic
River, that we developed to enable automated, distributed pro-
cessing of data streams. Finally, we review our earlier work
with MESO (Kasten and McKinley, 2007), a perceptual mem-
ory system designed to support online pattern clustering and
classification in data-intensive and time-sensitive applications.
We use MESO for the classification and detection experiments
described in Section 4.

Time series processing. Figure 2 depicts two common meth-
ods for visualizing an acoustic clip. The top graph shows a
plot of the signal’s oscillogram, and the bottom graph shows
the same clip plotted as an acoustic spectrogram. A spectro-
gram depicts frequency on the vertical axis and time on the hor-
izontal axis. Shading indicates the intensity of the signal at a
particular frequency and time. Spectrograms are useful for vi-
sualizing acoustic signals in the frequency domain. Moreover,
spectral representations can be used for automated classifica-
tion and detection of acoustic events. In this study, for exam-
ple, spectrogram segments are distilled into signatures that can
be used to identify the bird species that produced a particular
vocalization.

To plot a spectrogram, the acoustic data is first divided into
equal sized segments and then filtered using a Welch window
to mitigate edge effects between segments. Then the discrete
Fourier transform (Cooley and Tukey, 1965) is used to compute
a frequency domain representation of each segment. Multiply-
ing each value by its complex conjugate converts the complex
representation used by the Fourier transform to a real represen-
tation of signal intensity. Finally, each segment is plotted to
produce a spectrogram.

Piecewise aggregate approximation (PAA) was introduced
by Keogh et al. (Keogh et al., 2000), and independently by Yi

1Perceptual memory is a type of long-term memory for remembering exter-
nal stimulus patterns (Fuster, 1995).

2



Figure 1: Example sensor platform deployments. Deployment locations: (a) Michigan State Univeristy Lakes site, East Lansing, MI; (b) Pond Laboratory at the
Kellogg Biological Station, Hickory Corners, MI; (c) Frog and toad Survey project wetland site, DeWitt, MI; and (d) Crystal Bog buoy deployment, Trout Lake,
Wisconsin.
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Figure 2: Visualization methods. Top, an oscillogram (normalized) of an acoustic signal. Bottom, a spectrogram of the same acoustic signal.

and Faloutsos (Yi and Faloutsos, 2000), as a means to reduce
the dimensionality of time series. For completeness a brief

overview of PAA is presented here; full details can be found
in (Keogh et al., 2000; Yi and Faloutsos, 2000). As shown in
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Figure 3, an original time series sequence, Q, of length n is con-
verted to PAA representation, Q. First, Q is Z-normalized (Li
and Porter, 1988) as follows: ∀i qi = (qi − µ)/σ, where µ is
the vector mean of the original signal, σ is the corresponding
standard deviation and qi is the ith element of Q. Second, Q is
segmented into w ≤ n equal sized subsequences, and the mean
of each subsequence computed. Q comprises the mean values
for all subsequences of Q. Thus, Q is reduced to a sequence Q
with length w. Each ith horizontal segment of the plot shown in
Figure 3(b) represents a single element, qi, of Q. Thus, the com-
plete PAA algorithm first Z-normalizes Q and then computes
the segment means to construct Q, as depicted in Figure 3(b).

Z-normalization and conversion to PAA representation af-
fords two benefits that facilitate detection and classification.
First, detection and classification using acoustics in natural en-
vironments is often impeded by variance in signal strength due
to distance from the sensor station or differences between in-
dividual vocalizations. Z-normalization converts two signals
that vary only in magnitude to two identical signals, enabling
comparison of signals of different strength. Second, conver-
sion to PAA representation helps smooth the original signal
to facilitate comparison of vocalizations. Specifically, during
classification or detection, signals are typically represented as
vectors of values, called patterns. For acoustics, many pattern
values may represent noise or sounds other than those voiced
by a bird. These values do not contribute usefully when using
distance metrics, such as Euclidean distance, for pattern com-
parison. PAA smoothes intra-signal variation and reduces pat-
tern dimensionality, while Z-normalization helps equalize sim-
ilar acoustic patterns that differ in signal strength.

Figure 4 depicts a spectrogram for an acoustic signal before
and after conversion to PAA representation. The spectrogram
shown in Figure 4(b) was constructed by applying PAA to the
frequency data comprising each column of the original spec-
trogram shown in Figure 4(a). Despite smoothing and reduc-
tion using PAA, these spectrograms are similar in appearance,
demonstrating the potential utility of using PAA representation.

For comparing patterns that have not been reduced using
PAA, Euclidean distance can be used. Euclidean distance is
defined as: DEuclidean(Q, P) ≡

√∑n
i=1(qi − pi)2, where Q and P

are two patterns of length n. Computing the distance between
two patterns reduced using PAA is similar to computing Eu-
clidean distance. PAA distance is defined as: DPAA(Q, P) ≡
√

n/w
√∑w

i=1(qi − pi)2, where Q and P are two patterns reduced
using PAA. The terms n and w are the lengths of the original
patterns and those after PAA reduction, respectively. PAA dis-
tance has been shown to be a tight lower bound on Euclidean
distance (Keogh et al., 2000), providing a close estimate of Eu-
clidean distance between the original two patterns despite PAA
dimensionality reduction.

Extending the benefits of PAA is a representation introduced
by Lin et al. (Lin et al., 2003) called Symbolic Aggregate ap-
proXimation (SAX). The purpose of SAX is to enable accurate
comparison of time series using a symbolic representation. As
shown in Figure 5(a), SAX converts a sequence from PAA rep-
resentation to symbolic representation, where each symbol (we
use integers as symbols, others have used alphabetic charac-

ters (Lin et al., 2003)) appears with equal probability based on
the assumption that the distribution of time series subsequences
is Gaussian (Lin et al., 2003). Thus, each PAA segment is as-
signed a symbol by dividing the Gaussian probability distribu-
tion into α equally probable regions, where α is the alphabet
size (α = 5 in Figure 5(a)). Each PAA segment falls within
a specific Gaussian region and is assigned the corresponding
symbol.

Kumar et al. (Kumar et al., 2005) proposed time series
bitmaps for visualization and anomaly detection in time se-
ries. SAX bitmaps are constructed by counting occurrences of
symbolic subsequences of length n (e.g., 1, 2 or 3 symbols ).
Each bitmap can be represented using an n-dimensional ma-
trix, where each cell represents a specific subsequence. An ex-
ample is shown in Figure 5(b); using subsequences of length
n = 2, matrix cell (1, 1) contains the count and frequency with
which the subsequence 1, 1 occurs. Frequencies are computed
by dividing the subsequence count by the total number of sub-
sequences. An anomaly score can be computed by comparing
two bitmap matrices using Euclidean distance. The matrices
are constructed using two concatenated sliding windows. For
each anomaly score computed, both windows are moved for-
ward along the time series one time step and the correspond-
ing matrices computed. The distance between the matrices is
computed and reported as an anomaly score. Greater distances
indicate significant change in the time series. As further dis-
cussed in Section 3, we use SAX bitmap matrices to compute
an anomaly score for acoustic signals, enabling the extraction
of bird vocalizations and other acoustic events.

Dynamic River. We have developed a prototype system, Dy-
namic River (Kasten et al., 2007), that enables the construction
of a distributed stream processing pipeline. A Dynamic River
pipeline is defined as a sequential set of operations composed
between a data source and it’s final sink (destination). Network
operators enable record processing to be distributed across the
processor and memory resources of many hosts. Pipeline seg-
ments are created by composing sequences of operators, such
as PAA and SAX, that produce a partial result important to
the overall pipeline application. As depicted in Figure 6, seg-
ments can receive and emit records using the streamin and
streamout operators, respectively, enabling instantiation of
segments and the construction of a pipeline across networked
hosts. Moreover, pipelines can be recomposed dynamically by
moving segments among hosts.

Preserving the integrity of data streams in the presence
of a dynamic environment is a challenging problem. Dy-
namic River records can be grouped using record subtype,
scope and scope type header fields. We define a data
stream scope as a sequence of records that share some con-
textual meaning, such as having been produced from the same
acoustic clip. Within the data stream, each scope begins
with an OpenScope record and ends with a CloseScope
record. Optionally, CloseScope records can be replaced with
BadCloseScope records to enable scope closure while in-
dicating that the scope has not reached its intended point of
closure. For instance, if an upstream segment terminates unex-
pectedly and leaves one or more scopes open, the streamin
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Figure 4: (a) Original spectrogram. (b) Spectrogram after processing with PAA (stretched vertically for clarity).

operator will generate BadCloseScope records to close all
open scopes,

Scopes can be nested. The scope field indicates the cur-
rent scope nesting depth, larger values indicate greater nest-
ing while scope depth 0 indicates the outermost scope. The
scope type field enables the specification of an application
specific scope type. For instance, a scope can be identified
as comprising an acoustic clip or an ensemble. Optionally,
OpenScope records may contain context information, such as
the sampling rate of an acoustic clip. Scoping can also be used
to support graceful shutdown and fault tolerance in streaming
applications.

MESO. For classification and detection experiments we use
MESO2 (Kasten and McKinley, 2007), a perceptual memory
system designed to support online, incremental learning and
decision making in autonomic computing systems. MESO is
based on the well-known leader-follower algorithm (Hartigan,
1975), an online, incremental technique for clustering a data
set. A novel feature of MESO is its use of small agglomerative
clusters, called sensitivity spheres, that aggregate similar train-
ing patterns. Sensitivity spheres are partitioned into sets during
the construction of a memory-efficient hierarchical data struc-
ture. This structure enables the implementation of a content-
addressable perceptual memory system: instead of indexing by

2The term MESO refers to the tree algorithm used by the system (Multi-
Element Self-Organizing tree)

an integer value, the memory system is presented with a pat-
tern similar to the one to retrieve from storage. MESO can be
used strictly as a pattern classifier (Duda et al., 2001) if a cate-
gorization is known during training. In this case, each pattern is
labeled, assigning each pattern to a specific real-world category,
such as a particular bird species.

As shown in Figure 7(a), two basic functions comprise the
operation of MESO: training and testing. During training, pat-
terns are stored in perceptual memory, enabling the construc-
tion of an internal model of the training data. Each training
sample is a pair (xi, yi), where xi is a vector of continuous, bi-
nary or nominal values, and yi is an application-specific data
structure containing meta-information associated with each pat-
tern. The size of the sensitivity spheres is determined by a δ
value that specifies the sphere radius in terms of distance (e.g.
Euclidean distance) from the sphere’s center. Sensitivity sphere
size is calculated incrementally, growing the δ during training.
Figure 7(b) shows an example of sensitivity spheres for a 2D
data set comprising three clusters. A sphere’s center is calcu-
lated as the mean of all patterns that have been added to that
sphere. The δ is a ceiling value for determining if a training
pattern should be added to a sphere, or if creation of a new
sphere is required.

Once MESO has been trained, the system can be queried us-
ing a pattern without meta-information. MESO tests the new
pattern and returns either the meta-information associated with
the most similar training pattern or a sensitivity sphere contain-
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Figure 6: Basic internal structure of basic stream operators and the streamin and streamout network operators.

ing a set of similar training patterns and their meta-information.
When evaluated on standard data sets, MESO accuracy com-
pares very favorably with other classifiers, while requiring less
training and testing time in most cases (Kasten and McKinley,
2007).

3. Ensemble Extraction and Processing

A sensor data stream is a time series comprising continuous
or periodic sensor readings. Typically, readings taken from a
specific sensor can be identified, and each reading appears in
the time series in the order acquired. Online clustering or de-
tection of “interesting” sequences benefits from time-efficient,
distributed processing that extracts finite candidate sequences
from the original time series. Our goal is to extract potentially
recurring sequences that can be used for data mining tasks such
as classification or detection.

As noted earlier, we define ensembles as time series se-
quences that recur, though perhaps rarely. This definition is
similar to other time series terms. For instance, a motif (Yi
et al., 1998; Chiu et al., 2003; Lin et al., 2002; Tandon et al.,
2004) is defined as a sequence that occurs frequently, and a dis-
cord (Keogh et al., 2005) is defined as the sequence that is least
similar to all other sequences. A limitation for finding a discord
in a time series is that the time series must be finite. Our use
of ensembles addresses this limitation by using a finite window
for computing an anomaly score and thereby detecting a dis-
tinct change in time series behavior. An anomaly score greater
than a specified threshold is considered as indicating the start of
an ensemble that continues until the anomaly score falls below
the threshold.

Figure 8 depicts a typical approach to data acquisition and
analysis using a Dynamic River pipeline that targets ecosystem
monitoring using acoustics, and Table 1 provides a conscise de-
scription of the pipeline operators. First, audio clips are ac-
quired by a sensor platform and transmitted to a readout op-
erator that writes the clips to record for storage. Although ad-
ditional record processing is possible prior to storage, it is often
desirable to retain a copy of the raw data for later study. During
analysis, a data feed is invoked to read clips from storage and
write them to wav2rec to encapsulate acoustic data (WAV for-
mat in this case) in pipeline records. The remaining operators
comprise the process for extracting ensembles and processing
them for classification or detection using MESO, as follows.

The pipeline segment, saxanomaly→trigger→cutter,
transforms records comprising acoustic data into ensembles.
The incoming record stream is scoped, with each clip delim-
ited by an OpenScope/CloseScope pair. The outgoing
record stream comprises ensembles that are also delimited by
an OpenScope/CloseScope pair. The clip and ensemble
scopes are typed, using the scope type record header field,
as scope clip or scope ensemble respectively.

The moving average of the SAX anomaly score, as described
in Section 2, is output by saxanomaly in addition to the origi-
nal acoustic data. Parameters such as the SAX anomaly window
size, SAX alphabet size and a moving average window size, can
be set to meet the needs of a particular application or data set.
The SAX anomaly window size specifies the number of sam-
ples to use for constructing each concatenated window used for
computing the SAX anomaly score, for a given SAX alpha-
bet. The moving average window size specifies the number of
anomaly scores to use for computing a mean anomaly score that
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Figure 8: Block diagram of pipeline operators for converting acoustic clips into ensembles for detection of bird species.

is output by saxanomaly as input to the cutter operator.
Based on the mean anomaly score, the cutter operator ex-
tracts windows of anomalous behavior from the data stream. In
our experiments with environmental acoustics, we set the mov-
ing average window to 2,250 samples (approximately 0.1 sec-
onds), the SAX anomaly window to 100 samples and the SAX
alphabet size to 8.

Figure 9 depicts the anomaly score computed the by
saxanomaly operator (top) for the signal depicted in Fig-
ure 2, the corresponding trigger signal output by the trigger
operator (center) and the corresponding ensembles extracted
from the original acoustic signal by the cutter operator (bot-
tom). The trigger operator transforms the anomaly score
output by saxanomaly into a trigger signal that has the dis-
crete values of either 0 or 1. The trigger operator is adap-
tive in that it incrementally computes an estimate of the mean
anomaly score, µ0, for values when the trigger value is 0.

Trigger emits a value of 1 when the anomaly score is more
than 5 standard deviations from µ0 and a 0 otherwise. The num-
ber of standard deviations is application specific.

The cutter operator reads both the records containing the
original acoustic signal and the records emitted by trigger.
When the trigger signal transitions from 0 to 1, cutter emits
an OpenScope record, designating the start of an ensemble,
and begins composing an ensemble. Each ensemble comprises
values from the original acoustic signal corresponding to trig-
ger values of 1. When the trigger value transitions from 1 to 0,
cutter emits a CloseScope record, and resumes consum-
ing acoustic values until the trigger value again transitions to 1.
The record stream, as emitted from cutter, comprises clips
that contain one or more ensembles.

The pipeline segment, reslice→welchwindow→
float2cplx→dft→cplxconj, transforms the amplitude
data of each ensemble into a frequency domain (power spec-
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Figure 9: Anomaly score, trigger signal and ensembles extracted from the acoustic signal shown in Figure 2.

trum) representation in a way similar to that used to produce
a spectrogram. First, for each pair of ensemble records, the
reslice operator constructs a new record comprising the last
half of the first original record and the second half of the second
record. This new record is then inserted into the record stream
between the two original records. Reslicing ensemble records
is a method similar to that used by Welch’s method (Welch,
1967) for minimizing variance when computing power spectral
density (PSD) using finite length periodograms.

The remainder of the pipeline segment, starting with
welchwindow, computes a floating point representation of
each ensemble’s spectrogram, where each ensemble comprises
one or more records of spectral data. Next, each record of each
ensemble is passed to the cutout operator. The cutout op-
erator selects specific frequency ranges from each record and
emits records comprising only these ranges. Data outside of the
selected range is discarded. For our classification experiments,
the frequency range ≈[1.2kHz,9.6kHz] was cutout. Frequen-
cies above and below this range typically have little data useful
for classification or detection of bird species. Moreover, data
below this range typically comprises low frequency noise, in-
cluding the sound of wind and sounds produced by human ac-
tivity. For our detection experiments, discussed in Section 4,
the cutout operator with smaller frequency ranges was used
to further reduce the frequency range for better detection of spe-
cific species.

The optional paa operator reduces each record to a PAA rep-
resentation as discussed in Section 2. For our experiments, we
used records containing 1,050 frequency power values to con-
struct training and testing patterns. Each pattern comprised ei-
ther the entire 1,050 frequency power values, or was reduced
by a factor of 10 using PAA. The effectiveness of using PAA
representation for smoothing acoustic spectral data is demon-
strated in Section 4. Finally, the rec2vect operator converts
pipeline records to vectors of floating point values (patterns),
suitable for use in our classification and detection experiments
with MESO.

4. Assessment

Listed in Table 2 are the four-letter species codes and the
common names for the 10 bird species whose vocalizations we
used in our experiments. Also listed are the number of individ-
ual patterns and ensembles extracted from the recorded vocal-
izations and included in our experimental data sets. For testing
classification accuracy, we used four data sets produced from
a set of audio clips, and each extracted ensemble contains the
vocalization from one of the 10 bird species. Although each en-
semble contains the vocalization for only a single species, the
clips typically contain other sounds such as those produced by
wind and human activity.

Ensemble data sets. Two ensemble data sets, comprising
473 ensembles, were produced using the method described in
Section 3. The data sets differ in that one was processed with
PAA while the other was not. The ensembles produced by the
cutter operator were then fed to the dft (discrete Fourier
transform) operator for further processing (refer to Figure 8).
Each ensemble comprises one or more patterns. Each pattern
was constructed by merging 3 frequency domain records. A
single pattern represents 0.125 seconds of acoustic data in the
range ≈[1.2kHz,9.6kHz] and comprises either 1,050 features or,
when processed with PAA, 105 features. A voting approach is
used for classifying each ensemble. Specifically, each pattern
belonging to a given ensemble is tested once and represents a
“vote” for the species indicated by the test. The species with
the most votes is returned as the recognized species.

Pattern data sets. Each of the two pattern data sets com-
prises 3,673 patterns extracted from the 473 ensembles in the
ensemble data sets. Like the ensemble data sets, each pattern
has either 1,050 or 105 features and represents 0.125 seconds
of acoustic data. Ensemble grouping is not retained and, as
such, recognition is based on testing with a single pattern.

4.1. Species Classification

Experimental method. We tested classification accuracy
using cross-validation experiments as described by Murthy et
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Table 1: Description of Dynamic River data operators.

Operator Description
cplxconj Convert an input record of complex val-

ues to a record of comprising the complex
conjugate values of the input record.

cutout Convert an input record of floating point
values by selecting a specific range of val-
ues and discarding the remainder.

cutter Expects both a data record and a
trigger record as input and emits
records comprising input data record seg-
ments that correspond to when the input
trigger record values are 1 (see trigger
below).

dft Convert an input record of complex val-
ues by computing the discrete Fourier
transform.

float2cplx Convert an input record of floating point
values to a complex number representa-
tion. Specifically, the real part of the
imaginary number contains the original
floating point value and the imaginary
part is set to 0.

paa Convert an input record of floating point
values using piecewise aggregate approx-
imation (PAA).

rec2vect Convert an input record to a vector of
floating point values.

reslice Convert each pair of input records to 3
output records by inserting a record com-
prising the last half of the first input
record and the first half of the second
input record between the original input
records.

saxanomaly Compute an anomaly score using sym-
bolic aggregate approximation (SAX)
bitmaps for each input record and emit
records comprising the anomaly score and
the original records.

trigger Convert each input record containing
anomaly scores to to a record of trigger
values. Each trigger value is either 0 or
1. Records that do not contain anomaly
scores are also emitted unchanged.

wav2rec Convert WAV format acoustic data into
Dynamic River records.

welchwindow Convert an input record by filtering it with
a Welch window.

al. (Murthy et al., 1994) with a leave-one-out approach (Tan
et al., 2006). The leave-out-out approach was used due to the
high variability found in bird vocalizations and the relatively
small size of the data sets. Each experiment is conducted as

Table 2: Bird species codes, names and the number of patterns (Pat.) and en-
sembles (Ens.) used in the experiments discussed in Section 4.

Code Name Pat. Ens.
AMGO American goldfinch (Carduelis tristis) 229 42
BCCH Black capped chickadee (Poecile atricapillus) 672 68
BLJA Blue Jay (Cyanocitta cristata) 318 51
DOWO Downy woodpecker (Picoides pubescens) 272 50
HOFI House finch (Carpodacus mexicanus) 223 26
MODO Mourning dove (Zenaida macroura) 338 24
NOCA Northern cardinal (Cardinalis cardinalis) 395 42
RWBL Red winged blackbird (Agelaius phoeniceus) 211 27
TUTI Tufted titmouse (Baeolophus bicolor) 339 59
WBNU White-breasted nuthatch (Sitta carolinensis) 676 84

follows:

1. Randomize the data set. For the ensemble data set, ran-
domize the order of the ensembles. For the pattern data
set, randomize the order of the patterns.

2. In turn select each ensemble/pattern for testing, train using
all remaining data. Test using the single selected ensem-
ble/pattern.

3. Calculate the classification accuracy by dividing the sum
of all correct classifications by the total number of ensem-
bles/patterns.

4. Repeat the preceding steps n times, and calculate the mean
and standard deviation for the n iterations.

In our leave-one-out tests, we set n equal to 20. Thus, for
each mean and standard deviation calculated, MESO is trained
and tested 9,460 times in the case of the ensemble data set and
73,500 times in the case of the pattern data set.

We also executed a resubstitution test, where MESO was
both trained and tested using the entire data set. Although lack-
ing statistical independence between training and testing data,
resubstitution affords an estimate of the maximum classifica-
tion accuracy expected for particular data set. Each experiment
is conducted as follows:

1. Randomize the data set. For the ensemble data set, ran-
domize the order of the ensembles. For the pattern data
set, randomize the order of the patterns.

2. Train and test using all ensembles/patterns.
3. Calculate the classification accuracy by dividing the sum

of all correct classifications by the total number of ensem-
ble/patterns.

4. Repeat the preceding steps n times, and calculate the mean
and standard deviation for the n iterations.

In our resubstitution tests, we set n equal to 100. Thus, for
each mean and standard deviation calculated, MESO is trained
and tested 100 times for both the pattern and ensemble data sets.

Table 3 summarizes the accuracies and timing results for the
four bird song data sets. Resubstitution and leave-one-out re-
sults are greater than 92% and 71% accurate for all data sets
respectively. Given that bird vocalizations are highly variable
and that data set sizes are relatively small, we can consider these
results promising.

Shown in Figure 10(a) is the confusion matrix (Provost and
Kohavi, 1998) for classification using individual PAA patterns
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Table 3: Classification results. Timing experiments were run using the entire data set for both training and testing. For the PAA data sets, timing results include the
time required for conversion to PAA representation. Timing tests were executed on a 2GHz Intel Xenon processor with 1.5GB RAM running Linux.

Data set
Pattern Ensemble PAA Pattern PAA Ensemble

Accuracy%
Leave-one-out 71.5%±0.9% 76.0%±1.1% 80.4%±0.3% 82.2%±0.9%
Resubstitution 92.3%±3.1% 96.3%±2.8% 94.7%±0.8% 97.2%±1.2%

Timing (s)
Training 57.7±1.1 56.1±1.7 57.7±1.1 56.1±1.7
Testing 57.7±1.9 58.6±2.8 57.7±1.9 58.6±2.8

and the leave-one-out approach. Matrix columns are labeled
with the species predicted, while rows are labeled with the
species that actually produced the original vocalization. The
main diagonal (in bold) indicates the percentage of patterns cor-
rectly classified. Other cells indicate the percentage of patterns
confused with other species. For instance, the intersection of
the row labeled AMGO with the column labeled BLJA indicates
that 4.7% of blue jay patterns were confused with the Ameri-
can goldfinch. As shown, most patterns are correctly classified,
with the northern cardinal most likely to be classified correctly
while the American goldfinch is most likely to be confused with
another species.

Figure 10(b) shows the confusion matrix for classification
using PAA ensembles and the leave-one-out approach. Again,
most ensembles are correctly classified. Moreover, ensemble
classification is typically more accurate than classification us-
ing individual patterns. However, the black capped chickadee
and the mourning dove are notable exceptions and are mis-
classified more frequently than when testing with individual
patterns. Using ensembles, the red winged blackbird is most
likely to be classified correctly, while the mourning dove is
most likely to be confused with a different species. These re-
sults compare favorably with other works that studied classifi-
cation of bird species (Fagerlund and Härmä, 2005; Somervuo
and Härmä, 2004), further discussed in Section 5.

4.2. Species Detection
The goal of species detection is to indicate whether the song

for a particular bird species is present in an acoustic clip. De-
tection should maximize the true-positive rate while holding
false-positives (where other sounds are identified as the target
species) to an acceptably low level. Species detection is use-
ful for automating ecological surveys and for annotating sensor
data with metadata, to facilitate identification of candidate data
sets for study (Arzberger, 2004; Porter et al., 2005; The 2020
Science Group, 2005).

Experimental method. For the detection experiments we
divided the ensemble and pattern data sets into a training and
testing set. The two training sets comprise the patterns (or en-
sembles) for a single species. For our experiments we used ei-
ther the black capped chickadee or the white breasted nuthatch
for training. The two corresponding testing sets comprise all
the patterns for the remaining 9 species after occurrences of the
training species had been removed. Each experiment was con-
ducted as follows:

1. Randomize the training set. For the ensemble data set,
randomize the order of the ensembles. For the pattern data
set, randomize the order of the patterns.

2. Select 10% of the training set and add it to the testing set.
Remove the selected patterns/ensembles from the training
set.

3. Train using the remaining data in the training set. Test
using all the data in the testing set, reporting whether a
test ensemble/pattern is correctly identified as the target
species.

4. Repeat the preceding steps n times, and calculate the true-
positive and false-positive rates over all n iterations.

In our tests, we set n equal to 100. Thus, for each true- and
false-positive rate calculated, MESO is trained and tested 100
times. This process was repeated for each of 200 detector set-
tings. Each detector setting specifies a proportion, ρ, of the
MESO sensitivity sphere δ grown during training. If the dis-
tance between a test pattern and the closest sphere mean is ≤ ρδ,
then the test pattern is considered as indicating the presence
of the target species and the detector returns true. Otherwise,
the pattern is rejected and the detector returns false. We var-
ied ρ over the interval [0.0, 2.0] in steps of 0.01 and calculated
the true- and corresponding false-positive rates for each setting.
When testing using ensembles, a voting method is again used
where the target species is reported as detected only if 50% or
more of the votes are for that species. Each ensemble com-
prises a variable number of patterns, and each pattern is tested
once and the result represents a vote for the indicated species.

Detector assessment. Receiver operating characteristic
(ROC) curves (Eagn, 1975) have been used for evaluating ma-
chine learning and pattern recognition techniques (Bradley,
1997) when the cost of error is not uniform. ROC curves plot
the false-positive rate against the true-positive rate where each
point on the curve represents a different setting of detector pa-
rameters. As such, if the cost of incorrect detection is high, a
detector setting is needed that will hold the false-positive rate
low even at the cost of failing to detect the target species in
many clips. However, since clips are regularly produced by
each sensor platform, failure to detect the target species in some
clips will likely be compensated for during subsequent detec-
tor operation. Moreover, precision is also computed using the
number of true- and false-positives. Precision is the rate of
true-positives to the total number of positive predictions, and
is defined as: precision = T P/(FP + T P), where TP and FP
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(a) individual patterns (b) entire ensembles

Figure 10: Confusion matrix for classification of individual PAA patterns and entire ensembles.

are the number of true- and false-positive predictions respec-
tively (Provost and Kohavi, 1998). A precision of 1.0 occurs
where there are no false-positives.

Figure 11 depicts ROC curves for detecting the black capped
chickadee and the white breasted nuthatch. For the black
capped chickadee, detection is approximately 50% true-positive
when the the false-positive rate is approximately 4% using ei-
ther patterns or ensembles. Detection of the white breasted
nuthatch is approximately 50% true-positive with a correspond-
ing 1% false-positive rate using either patterns or ensembles.
We consider these rates to be promising for detection of bird
species that have highly complex and variable songs.

As shown in Figure 12, further insight can be gleaned by
plotting a ROC curve together with precision. A semi-log scale
magnifies their relationship. For the black capped chickadee,
the best true-positive rate that can be attained while maintaining
a precision of ≥0.9 is approximately 10% and 9% for patterns
and ensembles respectively. Similarly for the white breasted
nuthatch, the best true-positive rates attained with a precision
of ≥0.9 are approximately 28% and 33%.

High variance is particularly notable in the ROC curve shown
in Figure 11(b) and 12(b). This variance is in part due to the
small size of the data sets with respect to the variability found
in bird vocalizations. Moreover, a significant proportion of the
frequency range used may not be useful for detection of the
target species. In future work we plan to apply techniques, such
as discriminate analysis (Duda et al., 2001), to help reduce the
frequency range needed for detecting a specific species.

5. Related Work

Several research projects address selection of tuples from
data streams (Group, 2003; Babcock et al., 2002; Avnur and
Hellerstein, 2000; Chandrasekaran et al., 2003). Such works
treat a data stream as a database and optimize query processing
for better efficiency. Other works address content-based rout-
ing (Bizarro et al., 2005), where tuple selection is used to route
information based on data stream content. Our work with au-
tomated extraction of ensembles and annotation of data stream

content may be beneficial to many of these approaches. For
example, annotations can be treated as tuples that describe the
underlying data stream and can be used by selection schemes
for routing data stream to address application specific require-
ments.

Recently, there has been increased interest on identifying
motifs (Chiu et al., 2003; Lin et al., 2002; Yi et al., 1998;
Berndt and Clifford, 1994) and discords (Keogh et al., 2005)
in time series. Motifs and discords can be clustered in support
of time series data mining. Our work with ensembles comple-
ments work on motifs and discords in that ensembles can be
considered as candidate motifs or discords. However, rather
than focus on the most or least frequent time series patterns,
ensembles are locally anomalous patterns that may recur only
rarely. Each ensemble may be a motif, a discord or neither.
Some approaches to motif and discord identification focus on
subsequences of a specific length and require both scanning the
time series and comparing subsequences to determine how of-
ten each occurs (Chiu et al., 2003; Keogh et al., 2005). Others
consider variable length subsequences by iteratively increas-
ing the subsequence length and rescanning the time series until
a specified maximum length has been reached (Tandon et al.,
2004). Our focus is on the timely, automated processing of
continuous streams of sensor data that likely comprise variable
length events. As such, processor- and memory-efficient tech-
niques for extracting and processing ensembles are needed. Our
approach to ensemble extraction requires only a single scan of
a time series and extracts variable length ensembles.

Although ensembles are not necessarily frequently recurring,
they are time series sequences that can be treated as candidate
motifs. As we have shown, ensembles can be used for classi-
fication and detection applications using acoustic data streams.
Several projects have addressed detection and identification us-
ing time series data. For instance, MORPHEUS (Tandon et al.,
2004) addresses the need for unlabeled data sets that represent
normal behavior for training anomaly detectors. MORPHEUS
uses a motif oriented approach that extracts frequently occur-
ring subsequences and treats them as normal patterns suitable
for training a detector. Agile (Yang and Wang, 2004) uses a
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(a) BCCH ROC curve using patterns.
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(b) BCCH ROC curve using ensembles.
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(c) WBNU ROC curve using patterns.
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(d) WBNU ROC curve using ensembles.

Figure 11: ROC curves for detection of the black capped chickadee (BCCH) and white breasted nuthatch (WBNU).

variable memory Markov model (Ron et al., 2004) (VMM) to
detect transitions in an evolving sensor data stream produced
by observing an underlying process. Agile uses a VMM to con-
struct a reference model for a process and then reports a tran-
sition when process behavior no longer corresponds with the
model. Approaches like MORPHEUS, Agile and others that
address clustering data stream content to discover a meaningful
structuring for the raw data (Beringer and Hullermeier, 2006;
Chu et al., 2004) may benefit from our approach for extraction
of ensembles. In turn, our approach for ensemble extraction and
processing may benefit from leveraging techniques described
by these works.

Other research groups have addressed offline classification
of organisms based on their vocalizations. Mellinger and
Clark (Mellinger and Clark, 2000) addressed classification of
whale songs, with specific application to identification of bow-
head song end notes, using spectrogram correlation. Fagerlund
and Härmä (Fagerlund and Härmä, 2005) studied parameteriza-
tion and classification of bird vocalizations, using 10 parame-
ters that were used to describe the inharmonic syllables of 6 bird
species. The 10 parameters were used to classify bird species

using a k-nearest neighbor (kNN) approach using Euclidean and
Mahalanobis distance. Classification accuracy was 49% using
Euclidean distance and 71% using Mahalanobis distance. An-
other study (Somervuo and Härmä, 2004) used bird song syl-
lables and dynamic time warping (Berndt and Clifford, 1994)
(DTW) to mitigate the impact of varying syllable lengths when
computing distances. Syllables were clustered and then used for
constructing histograms for each species. The histograms were
compared, by computing their mutual correlation, for recog-
nition of 4 bird species. The highest classification accuracy at-
tained was 80%, comparing favorably with our approach. How-
ever, we considered 10 species rather than 4 in our classification
experiments. Vilches et al. (Vilches et al., 2006) investigated
the effect of signal quantization on the recognition accuracy for
3 bird species using 3 data mining algorithms. Results indicate
that, Like PAA, signal quantization can reduce pattern dimen-
sionality and can improve recognition accuracy. In this study,
recognition rates ranged from 85.6%-98.4% when classifying 3
species.

Kogan and Margoliash (Kogan and Margoliash, 1998) used
DTW-based long continuous song recognition (LCSR) and hid-
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(a) BCCH plots using patterns.
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(b) BCCH plots ensembles.
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(c) WBNU plots using patterns.
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(d) WBNU plots using ensembles.

Figure 12: Semi-log scale ROC curves and precision for detection of the black capped chickadee (BCCH) and white breasted nuthatch (WBNU).

den Markov models (HMM) in a comparative study for recog-
nition of individual birds of a particular species in a controlled,
caged environment. Specifically, experiments were conducted
using the vocalizations of 4 individual zebra finches and 4
individual indigo buntings. LCSR requires careful selection
of templates for matching vocalizations and other sounds in
recordings. For HMM, a compound model was constructed
by training separate HMMs on 3 sound categories: calls, syl-
lables and cage noises. A proportion of each data set is used
for HMM training, while the entire data set is used for testing.
Classification accuracy varied widely depending on the recog-
nition method used, whether recognition was based on sylla-
bles or songs, size of training and testing sets, template selec-
tion, and on which individual bird was to be recognized. Chou
et al. (Chou et al., 2007) used HMMs for recognition of bird
species based on song syllables. This approach attained 78.3%
recognition rate for 420 bird species vocalizations extracted
from a commercial CD. An automated technique was used to
extract syllables from acoustic clips comprising the song of a
particular species. Whereas our approach extracts ensembles
that capture general acoustic events, syllable extraction is more

specific and segments a specific bird vocalization into individ-
ual syllables. Fagerlund (Fagerlund, 2007) also used song sylla-
bles in classification experiments with support vector machines
(SVN) attaining recognition rates that ranged from 79%-98%
using two data sets comprising 8 and 10 bird species. LCSR,
HMM and SVN approaches may benefit from automated en-
semble extraction for selection of candidate sounds for train-
ing, testing and template construction. Moreover, use of LCSR,
HMM and SVN techniques may complement our work with
species detection and help improve detector precision.

Each of the above classification studies used different sized
populations and different species, making direct comparison
between these works and with our results inconclusive. How-
ever, in general, our method compares well with other meth-
ods used for classification of birds. In addition, out study ad-
dressed the automated online extraction of acoustic events (en-
sembles) from streaming data for detection and classification
of bird species in natural environments. Ensemble extraction
helps reduce the processor and memory requirements needed
for processing continuous data streams by focusing more costly
classification and detection processing on ensemble data.
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6. Conclusions and Future Work

Results of our classification and detection experiments show
promise for automating species surveys using acoustics. More-
over, ensemble extraction and processing using distributed
pipelines may enable timely annotation and clustering of sensor
data streams. Annotation and clustering is a first step for trans-
muting raw data into usable information and its subsequent use
for expanding our knowledge and understanding of our envi-
ronment and other complex systems.

Currently, we have extracted ensembles from data streams
comprising a single signal. Although acoustic data streams are
data rich, extracting ensembles from multiple correlated data
streams may enhance classification and detection of time series
events. For instance, species identification may be more accu-
rate when acoustic data is coupled with geographic, weather or
other information about the environment. Moreover, monitor-
ing the health of an ecosystem will require the acquisition and
correlation of data from many sensors to capture the complex
behavior afforded by multiple interacting systems and organ-
isims.
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